Acta Cryst. (1960). 13, 357

Crystallographic data for potassium manganate K₂MnO₄. By F. H. HERBSTEIN, National Physical Research Laboratory, Council for Scientific and Industrial Research, Pretoria, South Africa

(Received 12 January 1960)

Crystallographic data for potassium manganate K₂MnO₄ were required in order to check reports that this compound is one of the products of the thermal decomposition of potassium permanganate KMnO₄ below 250 °C (early work in this field is summarized by Mellor (1932, p. 307) while some more recent results have been given by Glemser & Butenuth (1953)). K₂MnO₄ was prepared by the method of Scholder & Waterstradt (1954); the crystals obtained were thin purple laths elongated along [001] and showed straight extinction. Single crystals were stable in air for at least some weeks and did not require protection during photography.

Oscillation and Weissenberg photographs (Cu $K\alpha$, Ni filter) showed the crystals to be orthorhombic with the following cell dimensions and systematic absences:

$$a = 7.66 \pm 0.01, b = 10.33 \pm 0.01, c = 5.89 \pm 0.01 \text{ Å}$$
.

hol absent for h odd; 0kl absent for k+l odd. The calculated density for four K₂MnO₄ molecules per cell is 2.81 g.cm.⁻³, close to that of KMnO₄ (2.70 g.cm.⁻³). The possible space groups are $C_{2\nu}^9$ -Pna and D_{2h}^{16} -Pnam; the latter is preferred because of the isomorphism of K₂MnO₄ and low K₂SO₄.

The axial ratios calculated from the diffraction measurements (a:b:c=0.7415:1:0.5702) are in reasonably good agreement with those measured about 1831 by

			Relative observed
Index hkl	d_o (Å)	d_c (Å)	peak intensity
020	5.17	5.165	19
120	4 ·29	4.283	36
111	4 ·26	4.256	15
200	3.83	3.830	39
210	3.59	3.591	9
130	3.12	$3 \cdot 142$	5
211	3.08	3.062	100
031	2.978	2.975	37
002	2.940	2.945	16
040	2.596	2.583	21
230	9.570	$2 \cdot 562$	99
022 ∫	2.910	2.558	00
310	2.483	$2 \cdot 482$	32
320	2.291	$2 \cdot 290$	13
311	2.283	$2 \cdot 283$	5
212	2.276	$2 \cdot 276$	5
141	2.260	$2 \cdot 260$	5
132	2.147	2.148	16
321	9,199	$2 \cdot 133$	F
222 ∫	2.197	$2 \cdot 125$	5
330	2.057	2.050	37
400	1.918	1.915	11
401	1.824	1.821	4
34 0)	1.891	1.819	5
250 ∫	1.021	1.819	5
060 l	1.790	1.722	Q
213 ∫	1 140	1.721	0
160	1.678	1.682	4
43 0	1.675	1.672	4

Table	1.	Powder	pattern	of	K_2Mn	D 4
				ъ		1.

Table 2.	Extra	lines in K_2MnO_4 pattern
		Observed relative
	d (Å)	intensity
	4 ·88	w
	4 ·18	vw
	3.65	vvw
	3.57	vw
	3.25	w
	2.89	w
	2.88	vvw
	2.38	w

E. Mitscherlich (0.7570:1:0.5638) (see Mellor, 1932, p. 285). Mitscherlich also pointed out that K₂MnO₄ is isomorphous with K₂SO₄, K₂SeO₄ and K₂CrO₄. This is borne out by the present results and the crystallographic data for the last three compounds summarized by Donnay & Nowacki (1954).

The powder pattern of K₂MnO₄ was obtained on a Philips high-angle diffractometer, using filtered Cu $K\alpha$ radiation. As powdered K₂MnO₄ decomposes in a few days, measurements were always made on freshlyprepared samples. Light grinding of the crystals produced a very sharp pattern with the hk0 intensities intensified because of preferred orientation; this sample was used for spacing measurements (Table 1). Further grinding removed nearly all the orientation but at the cost of broadening the lines; this sample was used for measuring the relative peak intensities given in Table 1. All but a few weak lines (Table 2) could be satisfactorily indexed on the basis of the single-crystal data. The source of the extra lines has not been identified (it is not KMnO4) but they are presumably due to a small amount of decomposition product formed on grinding. No extra spots or lines were seen on the single-crystal photographs. If powdered K_2MnO_4 is left in air for a few days, it does transform into $KMnO_4$, the powder pattern being very broadened but still recognizable. No other crystalline transformation product was observed but this could have been due to the broadening of the KMnO₄ pattern.

The powder pattern of the decomposition products from KMnO₄ heated to constant weight in air at 220 °C. consists of a broadened K_2MnO_4 pattern and three broad lines at d = 7.08, 3.55 and 2.45 Å. The latter pattern is similar to that reported for δ -MnO₂ (Cole, Wadsley & Walkley, 1947).

References

COLE, W. F., WADSLEY, A. D. & WALKLEY, A. (1947). Trans. Electrochem. Soc. 92, 133.

DONNAY, J. D. H. & NOWACKI, W. (1954). Crystal Data. Memoir No. 60 of the Geological Society of America.

GLEMSER, O. & BUTENUTH, G. (1953). Optik, Berl. 10, 42. MELLOR, J. W. (1932). A Comprehensive Treatise on In-

organic and Theoretical Chemistry, Vol. 12. London: Longmans, Green and Co.

SCHOLDER, R. & WATERSTRADT, H. (1954). Z. anorg. Chem. 277, 172.